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Abstract
The physics of dense hydrogen can be developed starting with separate proton
and electron (or deuteron and electron) plasmas and formally introducing
the coupling between them. If this coupling is treated beyond linear
response in the interacting electron gas the dominant pairing features of low-
density hydrogen are captured. Progression of effective proton–proton pair
interactions, especially with respect to the domain of repulsive behaviour in
relation to cell size, and the overall scale of zero-point energy, indicates the
possible onset of a near ground-state fluid above a critical density. This fluid
will be metallic and unusually different in its properties when compared to
more conventional liquid metals. Further assessment of the quantum aspects
of such a state suggests the need for a more general analytical approach to the
hydrogen problem and one possible route is via scaling relations.

PACS numbers: 62.50+p, 67.80.Cx, 78.30.−j

1. Introduction

The standard plasma problem for protons (charge +e, mass mp) in a macroscopic volume
V (in which a uniform charge density −e(N/V ) = −eρ̄ has also been established) has the
Hamiltonian

Ĥ p = T̂ p +
1

2

∫
V

dr
∫

V

dr′v(r − r′)
{
ρ̂(2)

p (r, r′) − 2ρ̂(1)
p (r)ρ̄ + ρ̄2

}
(1)

where v(r) = e2/r and T̂ p is the kinetic energy operator. Here ρ̂(1)
p (r) is the single-

particle density operator for protons and ρ̂(2)
p (r, r′) = ρ̂(1)

p (r)ρ̂(1)
p (r′) − δ(r − r′)ρ̂(1)

p (r) is
the corresponding two-particle density operator. Normal plasma conditions will require
kBT > e2/(V/N)1/3 and kBT > {e2/(V/N)1/3}(me/mp)/

(
V

/
Na3

o

)1/3
. States of the plasma

that are not translationally invariant are discussed by DeWitt et al in the present proceedings [1].
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The electron gas problem (charges −e, masses me) has a Hamiltonian of exactly the same
form, namely

Ĥ e = T̂ e +
1

2

∫
V

dr
∫

V

dr′v(r − r′)
{
ρ̂(2)

e (r, r′) − 2ρ̂(1)
e (r)ρ̄ + ρ̄2} (2)

with one- and two-particle density operators paralleling the proton forms, but with a
background charge density +e(N/V ) = +eρ̄. Fermi liquid states will require

(
V

/
Na3

o

)1/3 ∼
1 (ao = h̄2/mee

2) and also kBT < {e2/(V/N)1/3}/(V /
Na3

o

)1/3
. This will also be the regime

of interest in the hydrogen problem which is obtained by taking equal values for ρ̄ in (1) and
(2) and then augmenting Ĥ e + Ĥ p by the Coulomb interactions which arise when the two
assemblies defining (1) and (2) occupy a common volume, V . Thus

Ĥ = Ĥ e + Ĥ p +
∫

V

dr
∫

V

dr′v(r − r′)
(
ρ̂(1)

p (r) − ρ̄
)(

ρ̂(1)
e (r′) − ρ̄

)
(3)

which is rotationally and translationally invariant in the thermodynamic limit. By replacing
the protons (Fermions, s = 1/2) with deuterons (Bosons, s = 1), implying a fundamental
change in quantum statistics, the corresponding Hamiltonian for deuterium is

Ĥ = Ĥ e + Ĥ d +
∫

V

dr
∫

V

dr′v(r − r′)
(
ρ̂

(1)
d (r) − ρ̄

)(
ρ̂(1)

e (r′) − ρ̄
)
. (4)

The importance of the coupling in (3) and (4), even in the Fermi liquid regime of densities
for (2), can be seen by noting that the problem represented by (1) has an energy/proton
dominated by the Madelung energy and in the ion-sphere approximation this is −(9/5)/rs ,
where (4π/3)r3

s a
3
o = V/N (energies will be given in atomic units). Accounting for

kinetic energy and exchange (but omitting correlation) the corresponding energy of (2) is
3(9π/4)2/3/5r2

s − 3(9π/4)1/3/2πrs and in the absence of the coupling a stabilizing density
for a metallic state would occur at rs ∼ 1.62, or with an average separation between protons of
∼3.2ao. The latter is to be compared with 1.4ao in a molecule in the ground state of molecular
hydrogen, where rs � 3.13. The evident pairing tendencies attributable to electron–proton
coupling terms remain exceedingly strong, even in highly compressed hydrogen. When this
is viewed in terms of effective interactions controlling the pairing of protons, the fact that
separations in proton pairs are so different from average separations inferred from density will
be seen to play an important role in arguing the existence of a possible near ground-state liquid
phase at pressures sufficiently high to also ensure a metallic state.

It will also be important to remember that at one atmosphere the zero-point energy, per
proton, amounts to 1450 K. This energy is localized in optic-like modes, but can become
translational, and further enhanced, at a depairing transition. It may be compared immediately
with the proton plasmon energy which sets the scale for proton dynamical energies in crystalline
hydrogen (for example,energies typifying longitudinal acoustic phonons as will appear below).
In atomic units this energy is h̄ωp = (me/mp)1/2 2

√
3/r

3/2
s , and for normal densities it would

already yield a plasmon with an energy equivalent to 2300 K, while at 10-fold compression
it rises to 7300 K. These are substantial energies, and they imply that the proton dynamics
depart noticeably from classical expectations. The tenacity of the quantum characteristics of
the protons is also illustrated by the thermal de Broglie wavelength λT for protons, which as
a fraction of rsao can be written as

λT /rsao = 32.85/rs{T (K)}1/2 (5)

where the temperature T is in kelvin. Thus if the temperature is taken, for example, as 1500 K,
and rs is 1.55 (eight-fold compression, or megabar conditions) the ratio in (5) is 0.55, and
is clearly too large to ensure classical conditions, even at what might reasonably be assessed
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as an elevated temperature. For the sake of comparison it may be noted that the equivalent
quantity for 4He, at its normal density, is 2.1 but for a temperature that is just 4 K. Adiabatic
separation of electron and proton timescales is also a difficulty as may be seen from the
magnitude of the Born–Oppenheimer parameter governing possible separation of proton and
electron timescales; this is (me/mp)1/4 = 0.153 (and 0.128 for the deuteron case).

The properties of the macroscopic phases originating with Hamiltonians (3) and (4) and
under normal conditions have been extensively reviewed by Silvera [2]. Maksimov and Shilov
[3] have provided a more recent review of high pressure properties. What follows will be
focussed on the physical nature of the states of hydrogen close to 13-fold compression (current
experimental capabilities, at low temperatures, already being close to 12-fold compression).

2. Crystal stability in dense hydrogen

For structures that are themselves Bravais lattices, hydrogen will take up a metallic state.
Structural preference can then be examined using response methods, beginning with linear
response and a uniform interacting electron gas described by (2) to which the protons couple
(by (3)). In particular, the stability of crystalline states relative to fluid can first be examined at
this level by determining the manifestation of zero-point effects on the static structure Sp(k)

factor for protons which is involved directly in the ground-state energy in terms originating with
the proton–proton interaction in (4). However, it also emerges indirectly through the coupling
terms in (4) when the adiabatic approximation is invoked and electron response is developed
to linear order in proton fields. The coupling term then contributes to the ground-state energy
per proton an amount

1

2

∫
0+

dk
(2π)3

|v(k)|2χ(1)(k)Sp(k)

where χ(1)(k) is the linear response function of the interacting electron gas (see below) and
Sp(k) is given by

Sp(k) = (1/N)
〈
ρ̂(1)

p (k)ρ̂(1)
p (−k)

〉 − Nδk,0. (6)

Here

ρ̂(1)
p (k) =

∫
V

dr exp(ik · r)ρ̂(1)
p (r) =

∑
j

exp(ik · rjp)

(the {rjp} being the set of proton coordinates). For what follows the statistical average
of ρ̂(1)

p (k) is denoted by ρ(1)
p (k). If the corresponding average of ρ̂(2)

p (r) is ρ(1)
p (r), then

the relationship between the static structure factor and the average two-particle density〈
ρ̂(2)

p (r, r′)
〉 = ρ(1)

p (r)ρp(r′)g(2)(r, r′), with g(2) the two-particle correlation function, is

Sp(k) − 1 = {
(1/N)ρ(1)

p (k)ρ(1)
p (−k) − Nδk,0

}
+

1

N

∫
V

dr eik·rρ(1)
p (r)

∫
V

dr′ e−ik·r′
ρ(1)

p (r′){g(2)(r, r′) − 1} (7)

which reduces for a translationally and rotationally invariant fluid
(
ρ(1)

p (r) = ρ̄
)

to the expected

Sp(k) − 1 =
∫

V

drρ̄ eik·r(gp(r) − 1).

For crystalline phases the averages required in, for example, equation (6), are to be taken
over states appropriate to a dynamical lattice, usually anharmonic phonons. A significant
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accounting for anharmonicity can be achieved by working within the self-consistent harmonic
approximation [4] for which in systems sustaining only acoustic phonons the frequencies are
given by

mpω2(q, j)eα(q, j) =
(∑

R �=0

(cos q · R − 1)
∑

β

∫
dk

(2π)3
φ(2)

p (k)kαkβ

× exp

[
−1

2

∑
µ,v

kµkνλµν(R)

]
exp(ik · R)

)
eβ(q, j) (8)

and where for branch j, e(q, j) is a polarization vector. For low temperatures the quantity λαβ

in (8) is defined by

λαβ(R) = 2[〈uα(R)uβ(R)〉 − 〈uα(R)uβ(0)〉]
= h̄

mpρ̄

∑
j

∫
BZ

dq
(2π)3

(1 − cos q · R)eα(q, j)eβ(q, j)ω−1(q, j). (9)

Here u(R) is the displacement of a proton away from Bravais lattice site R. By φ(2)
p (k) is

meant the linearly screened proton–proton interaction, namely φ(2)
p (k) = 4πe2/k2ε(k), where

ε(k) is the wave-number-dependent dielectric function of the interacting electron gas. This
embodies the linear response statement

φ(2)
p (k) = v(k) + v(k)2χ(1)(k) (10)

with χ(1)(k) the linear response function of the interacting electron gas introduced above. The
average appearing in (9) is now to be carried out over harmonic states. With these definitions
the static structure factor Sp(k) becomes (for k �= 0)

Sp(k) =
∑

R

eik·R exp


−1

2

∑
αβ

kαkβλαβ(R)


 . (11)

Within the linear screening approximation implicit in (8), equations (8) and (9) can be solved
self-consistently, and the results then used in (11). For a density of rs = 1.36 and for a fcc
lattice, the result is shown in figure 1 [5]; the static structure factor for a ground-state fluid
phase [6] is also shown for comparison, and it is immediately clear that the weight between
the Bragg peaks is very substantial, even for k values around 2kF , and since, as noted, Sp(k)

enters into the energetics (and also facilitates direct inclusion of electron–phonon coupling)
it will follow that already at the present level of linear response a ground-state fluid could be
competitive with a crystalline arrangement.

The reason for this rests with the obvious transfer of weight from the structure-dependent
Bragg peaks to the continuum between them, thereby weakening the overall sensitivity to
crystalline arrangement. In this context it is particularly instructive to examine the Lindemann
ratio of metallic hydrogen in a simple structure, (say fcc) at rs ∼ 1.36. From the self-
consistent phonons and polarizations this is also straightforward to determine this using
L = 〈u · u〉1/2/Rnn (Rnn being a near-neighbour separation at rs = 1.36) with the result
that [5]

L = 0.17.

This may be compared with typical classical values ∼0.1 at melting, and quantal values of
0.23 for Fermion hard spheres and ∼0.28 for the weakly coupled heliums. Knowledge of the
static structure factor is also important for the determination of electronic transport in normal
states (see below). Given Sp(k) all multi-phonon processes would be included in a description
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Figure 1. (Full line): the static structure factor for protons in metallic hydrogen in a face centred
cubic crystal of lattice constant a at T = 0 (rs = 1.36). The wave-vector k is chosen to be along
[100] and in the units given here 2kF has a value of 1.56. The required frequencies and polarizations
necessary to determine the static structure factor have been determined in a self-consistent manner.
(Dotted line): static structure factor for an isochoric fluid phase (from [6]).

of electron scattering by protons [7]. It is therefore also a measure of the importance of
electron–phonon coupling.

But inclusion of second-order response and beyond has a major impact on the supposed
existence of a stable dynamic crystalline state: to begin with, the sensitivity to structure
of assumed monatomic lattices is diminished even further by transference of additional
weight from Bragg peaks to the intervening continuum of the corresponding static structure
factors. This can be seen by noting that the weight originates with the Debye–Waller factor
exp(−2W(k)) where at low temperatures

2W(k) = 〈(k · u)2〉 = (1/ρ̄)
∑

j

∫
BZ

dq
(2π)3

{h̄2(q · ε(k))2/2mp}/h̄ω(q, j). (12)

The effect is therefore enhanced at higher orders through the appearance of further Debye–
Waller factors (three in the next order, then six, and so on). It follows that the extent to
which proton dynamics reduces structural sensitivity becomes increasingly marked at each
successive order.

Further, for densities beyond a critical value (where depairing of protons is anticipated)
the linear screening picture for dense hydrogen is still quite far from reality, as can be seen
from elementary arguments. First, the local ground-state electron density ρo actually at the
proton in a free hydrogen atom is ρo = 1/πa3

o . Accordingly as a fraction of this the average
density ρ̄ in a condensed phase of hydrogen is

ρ̄/ρo = 3
/

4r3
s
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and at eight-fold compression over normal densities this amounts to only 0.2. The cusp
theorem of Kato [8] therefore ensures that for the compressions of hydrogen of interest here
the average slope of the charge density at the proton can be mildly increased but overall
very little changed from standard free-atom values. For scattering states similar arguments [9]
suggest that the curvature of the charge density at the proton is also little altered. The combined
consequence of these constraints is that if this non-uniform electronic charge density is to be
developed by response to proton fields of an initially uniform electron gas (with density ρ̄)
then it is mandatory to go beyond common linear procedures. Thus, if (11) is developed to
one higher order, it becomes

φ(2)
p (k) = v(k) + v(k)2χ(1)(k) −

∫
dq

4π3
v(q)v(|k − q|)χ(2)(−k, q) (13)

where χ(2) is now the quadratic response function for the uniform interacting electron gas.
The last term in (13) leads to qualitative changes over the results obtained from linear

response, as was noted by Kaim et al [10]. Incorporation of quadratic response immediately
leads to a significant tendency towards proton pairing, but it is a tendency which progressively
declines in binding capacity (though largely preserving a characteristic separation) as density
increases. The linear response pair potential exhibits the expected Friedel oscillations with
a first minimum occurring around r = 2.55rs but with a diminishing depth which vanishes
at rs ∼ 1.34 [6]. This very same feature, a vanishing of the primary minimum φ(2)(r; rs),
is preserved when the electronic response problem is carried out using (13) except that as
noted inclusion of quadratic response shifts the location of the minimum quite close to the
free molecule value of ∼1.4ao [11]. Beyond this minimum, the residual structure in the
potential is quite weak, typically 10−3 Ry, or values notably lower than the proton zero-point
energies discussed above. The nonlinear response nevertheless enhances the Friedel structure
in the pair-interaction and even changes somewhat the character of the pairing since nonlinear
effects can bring in the influence of more distant protons. Though the conclusion rests on
the assumption of a metallic starting state, it should be remembered that for the paired but
insulating phases it requires only a moderate extension in proton–proton separation to induce
a transition from insulator to metal where the analysis then fully applies. Within an energy
of ∼10−2 Ry it appears that there is preservation of a characteristic pairing separation around
1.3–1.5 ao, and a steeply rising interaction at shorter separations.

It has been argued above that both according to slope and curvature, the electronic density
has a cusp at the proton and that the associated length scale remains close to ao. In a fully
many-body context, the local density approximation to the expected exchange contribution
from this charge density (taken to have a local form exp(−2r/ao)

/
πa3

o) gives, in Ry per
electron,

−(
6
/
a3

o

)
(3/π2)1/3

∫ roao

o

r2 dr exp(−8r/3ao)

where roao is typical of an inter-proton spacing. The main point is not the fact that characteristic
values are already reasonable for the hydrogen problem in terms of the contribution to pairing;
it is that the integrand in the above peaks at (3/4)ao, clearly demonstrating the importance of
the region a little less than one Bohr from the proton. This suggests that in local energetic terms
the propensity of pairing is likely to be maximized near 1.5 ao. Because of the largely invariant
cusp and curvature properties it is therefore straightforward to understand the persistence of
a quite repulsive region in the proton–proton interaction developing below this separation,
with but a weak oscillatory remant, small on the scale of zero-point energies, beyond this.
Accordingly the physical characteristics resemble those of a moderately hard-sphere quantum
system; apart from a large structure independent overall energy, the situation is not significantly
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different from the one faced by London [12] in accounting for the persistence of fluid states in
4He down to the lowest temperatures. For dense hydrogen the corresponding packing fraction
would be (σ/2rsao)

3 ∼ 0.15, where σ ∼ 1.4ao. The energy of a quantum hard-sphere system
(either boson or Fermi) will be gauged by quantity h̄2/mpσ 2, i.e. ∼1/mp.

Hard-sphere Fermions have been the subject of simulation studies [13] and also of analysis
by density functional methods [14]; the density at coexistence of the fluid state satisfies

ρ̄σ 3 = 0.31

or in terms of rs

rs = 0.92(σ/ao).

Since (σ/ao) ∼ 1.4 (expressing, as emphasized, the exchange driven invariance of the near
hard-core dimension) the importance of the density range around rs ∼ 1.3 is now clear. But
the system is also charged and has a very substantial bulk modulus. Long wavelength phonons
therefore lead to distant correlations and (as also noted by London [12]) to a zero-point energy
∼1

/
m

1/2
p . That the zero-point energy will remain significant in a fluid state is easily seen from

the fact that as a charged system the compressional (phonon) correlations and the zero-point
energy associated with just the longitudinal acoustic mode will be (from the Bohm–Staver
relation) ((9π)2/3

√
3/8)(me/mp)1/2

/
r2
s or 0.0469

/
r2
s Ry per proton.

These are very substantial energies and were remarked upon earlier. The consequence
is that if the zero-point energy is then considerably in excess of the residual structure in the
pair interaction then a depairing of protons is indicated at a critical density, beyond which
the system should enter a fluid state. Further insight into the likely appearance of a pressure
induced fluid phase follows from the observation that already at the level of linear response
the effective proton–proton interactions can be mapped onto Yukawa functions [15]. Monte
Carlo simulations for Fermion systems conforming to such interactions have been carried
out by Ceperley et al [16] and these indicate that at rs ∼ 1.6 a fluid ground state will
be competitive with crystalline arrangements. But the primary manifestation of nonlinear
response is to considerably decrease the repulsive range of the interaction, in comparison to
cell size increasing therefore the span of density over which the fluid state will be found. This
argument leads to a further conclusion; nonlinear effects must themselves eventually diminish
at sufficiently high density and from the Monte Carlo investigations on Fermion Yukawa
systems, it is clear that a pressure induced fluid state will once again recrystallize, only to give
way to a fluid again at densities sufficiently high so that screening itself becomes physically
unimportant.

Ground-state energy calculations for static lattice models of hydrogen have long predicted
an eventual transition from paired to monatomic structures [3], critical densities being in
the vicinity of rs = 1.35. Detailed calculations of zero-point energies for energetically
competitive structures disturbed by harmonic phonons have been carried out by Takezawa
et al [17]. When simply added to the energies of static structures, transition pressures are
found to be significantly altered, in fact downward. An interesting question, suggested by the
use of the full Sp(k) (i.e. going beyond one-phonon terms) is the degree to which incorporation
of the strong electron–phonon coupling will now be important. A partial answer to this may be
found in a generalization of the self-consistent phonon route (described above for a monatomic
structure) to paired structures. When applied to the Cmca structure it is found that inclusion
of dynamics in a manner which approximately includes phonons, can lead to energy shifts
of around 2 mR [18]. But in general the preceding arguments suggest that with inclusion of
dynamics the ensuing monatomic states are likely to be fluids. However, static and dynamic
attractions can exist between electrons in fluid metallic states of dense metallic hydrogen
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or deuterium. If they are of sufficient magnitude, ordered electronic states may then ensue
[19] at appropriate temperatures, as is next discussed.

3. Fluid states at low temperatures

A liquid phase of metallic hydrogen will be a dual Fermion system, with equal (or nesting)
Fermi wave vectors for its proton and electron sub-systems taken as non-interacting. In the
presence of correlation, low lying excited states of the combined system can be treated by
Fermi liquid theory. The most notable consequence is that a linear term in the specific heat
is expected with a very substantial magnitude (traced immediately to the scale of the proton
mass entering the density of low lying proton states) and strikingly different from the low-
temperature phonon contribution associated with the specific heat expected from a crystalline
phase [20]. Long wavelength collective excitations (e.g. longitudinal phonons) will contribute
to the specific heat at O(T 3). The difference between crystal and liquid is perhaps even
more evident in transport properties, for example the static resistivity. The electron system in
fluid metallic hydrogen can exchange energy with the proton system, the latter characterized
by an exceedingly high density of states. Solution of the Landau–Silin–Boltzmann equation
leads to the expected T 2 dependence but again of a scale which greatly exceeds crystalline
values anticipated from the scattering of phonons (of moderate wave vectors) in corresponding
crystalline states.

The thermodynamic properties of non-interacting bosons above any ordering temperature
should not be significantly different from those of classical particles. However, liquid
metallic deuterium will continue to have an electronic component contributing a linear term
in the specific heat, at moderate temperatures. For normal states the statistical differences
between liquid metallic hydrogen and deuterium should therefore be striking, as gauged
by the low-temperature thermodynamic functions. The same will be true for transport
properties.

The statistical differences between ordered states of liquid metallic hydrogen and
deuterium will again be notable. Hamiltonians (3) and (4) are expected to lead to states
possessing off-diagonal long-range order with factorization of the single-particle density
matrix expected for electrons, protons and deuterons as the case may be. Prominent among
the states of order, for hydrogen, is electronic superconductivity with charge fluctuations in
the proton system contributing in part to the pairing mechanism. Because of the strength
of the electron–proton interaction (no pseudopotential reduction occurs in this system) a
strong-coupling pathway is indicated and from direct solutions of the Eliashberg equation
high-temperature superconductivity (Tc ∼ 102 K) is predicted. Providing a corresponding
gap has opened for the electron system, no dissipation of energy in the coupled electron–proton
system is permitted and this is important in considering subsequent ordering of the proton
system at much lower temperatures (∼10−3Tpf , where Tpf is the Fermi temperature of the
free proton system). By the variational principle actual kinetic energies for interacting protons
must exceed this. As noted above, the effective proton–proton interaction retains a quite
repulsive inner core with a Friedel structure outside of it. Spin fluctuations may play a role in
determining a pairing mechanism but the main point is that the presence of these short-range
characteristics suggests that the pattern in 3He may be followed and that p-wave or higher
pairing may ensue. If this occurs any superfluid state that develops (in the presence of prior
superconducting order in the electron system) will be anisotropic. However the Meissner–
Ochsenfeld effect in the companion electron system could easily preclude standard magnetic
field probing of this.
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Liquid metallic deuterium can also support electronic superconductivity, again by pairing
originating primarily with charge fluctuations, and with ordering temperatures expected to be
lower than in liquid metallic hydrogen by virtue of the doubling of nuclear mass. If again
a gap is developed in the electron system, dissipation-free motion of this Boson system is
possible in principle at a lower temperature. Since the Boson spin here corresponds to s = 1,
the elementary estimate for the Bose–Einstein consideration for free Bosons (accounting for
spin degeneracy) gives

Tc (K) = 52.44
/
r2
s

or Tc = 28.8 K at rs = 1.35. Inclusion of interactions leads to excitations both of a collective,
phonon-like character, and also of a particle-like (excitation out of the condensate) character.
These give, respectively, contributions to the heat capacity with temperature dependence T 3

and T 3/2 with corresponding dependences for transport properties [20].
Above any superconducting transition temperature (and above any Bose condensation

temperature) liquid metallic hydrogen and deuterium should begin to adopt properties similar
to those of conventional liquid metals, at least in the structural characteristics important to
electron scattering. There is a difference, however, that may be important to experiment. As
noted originally by Mannari [21], the cross-section for electron scattering is linked to the
time-dependent density–density correlation function, here Sp(k, ω). In Born approximation,
the resistivity will then be given by

ρ = ρa(16π4/3)2/3rs

∫ 1

o

dy y3v2
s (y)

∫ ∞

−∞

dω

2π
Sp(y, ω)

βh̄ω

(eβh̄ω − 1)
(14)

where for scattering vector q, y = q/2kF . Here ρa is the atomic unit of resistivity
(ρa = aoh̄

2/e2 ≡ 21.7 µ cm) and vs(q) is the linearly screened electron–proton (Coulomb)
interaction scaled to its long-wavelength limit (2εF /3). For conventional liquid metals, the
temperature usually satisfies βh̄ω 
 1 for fluctuational energies characteristic of the fluid
state. Under these conditions∫ ∞

−∞

dω

2π
Sp(y, ω)

βh̄ω

(eβh̄ω − 1)
≈ Sp(y) (15)

the static structure factor, leading to estimates of resistivities in the range of 10 µ cm. In
the present case, however, full knowledge of Sp(y, ω) will be needed to establish the scale
and temperature dependence of electron transport and especially its progression to the Fermi
liquid limits discussed above. At conditions close to rs ∼ 1.5 the pair interaction depth is
changing quite rapidly with density, progressing from a scale sufficient to bind protons, to
one where unpaired but energetic protons have provided the basis for the low temperature
fluid state. Accordingly the behaviour of Sp(y, ω) will also reflect these dynamical features,
particularly pairing correlations. The measurement by Weir et al [22] of the conductivity
of hydrogen at p ∼ 150 GPa and T ∼ 3000 K is a case in point, for the temperature here
translates into 0.02 Ry which is representative of pair potential depths at these densities. Thus
the high-temperature result (15) may not be fully reached and resonant energy transfer between
electrons and protons exhibiting strong pairing fluctuations may still be playing an important
role.

4. Scaling approaches

There is an evident need to treat the hydrogen problem, for all phases, in a manner which deals
with the electrons and protons on an entirely equivalent footing, and this has been recognized
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for some time [23]. Towards this end (3) can be rewritten in a way that leads to a scaling
form for the ground-state energy (and also for free energies). Let = h̄2/m̄e2 be the modified
Bohr radius, with m̄ = me/(1 + ε), where ε = me/mp. In terms of this now define ro through
the statement ro = rsao/a = rs/(1 + ε). Next, scale all coordinates and momenta according
to r̄e = re/rs, r̄p = rp/rs, p̄e = (rs/h̄)pe and p̄p = (ro/h̄)pp. Then with e2/2a as a scaled
Rydberg, (3) is expanded to read

Ĥ =
(

e2

2a

)
1

ro


 1

ro(1 + ε)

∑
i

p̄2
i,e +

ε

ro(1 + ε)

∑
i

p̄2
i,p

= +
1

2

∑
i �=j

1

|r̄i,e − r̄j,e| −
∑
i,j

1

|r̄i,e − r̄j,p| +
1

2

∑
i �=j

1

|r̄i,p − r̄j,p|




= T̂ e + T̂ p + Û = T̂ + Û . (16)

The Hellmann–Feynman theorem can now be applied, both with respect to rs , but also
with respect to the constituent masses. If ψ is, for example, the normalized ground-state
wavefunction of Ĥ , then for example, the pressure is

p = −
(

∂E

∂V

)
N

= −
{

∂〈Ĥ 〉
∂V

}
N

= − ro

3V

{〈
∂Ĥ

∂ro

〉}
N

= − ro

3V

{
〈ψ|∂Ĥ

∂ro

|ψ〉
}

N

= − ro

3V

{
−2

〈T̂ 〉
ro

− 〈Û 〉
ro

}

yielding

3pV = 2〈T̂ 〉 + 〈Û 〉
which is, of course, the virial theorem. Similar derivatives carried out with respect to the
masses, regarded as parameters, yield

ro

∂E

∂ro

− me

∂E

∂me

− mp

∂E

∂mp

= −E = −E(ro,me,mp) (17)

which is an exact statement, independent of phase [24]. The result transcends the ground state,
and will be valid for all states, and hence all combinations of states, in particular those states
entering into a classical combination. The general solution to (17) has a scaling form, namely

E/N = f (mers,mpro)/ro

and for a one-componentsystem (for example, as described by the Hamiltonian of equation (2))
the corresponding result is

E/N = g(mro)/ro.

Since E(rs)/N is known with considerable accuracy for the interacting electron gas, it must
follow that provided a translationally invariant state is preserved for the proton system the
corresponding energy/proton can be obtained by scaling [24]. The kinetic energy/proton can
also be obtained and actually attains values of ∼0.02

/
r

3/2
s Ry [24] confirming yet again the

considerable proton energy scale invoked in the general arguments above.
What is clearly required is an extension of these scaling laws to finite temperatures. As

has been noted above, the static structure factor enters into the internal ground-state energy.
The same is true for the Helmholtz energy. For a, b = e, p the scaling can be generalized [24]

Sab(k̄) = f (mero,mpro, T ro)
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where k̄ = krsao. Extensions of this temperature scaling to the entire Helmholtz energy are
under consideration but in the interim it is clear that this problem could benefit considerably
from further ab initio, path integral simulations [25]. In particular the general arguments
advanced above clearly indicate the possibility of transitions at fixed temperature from
crystalline arrangements to liquids of higher density. Thus assessments focussing on the
melting curve, and especially the continuity of its slope will be especially valuable. For
lacking the latter, the clear implication would then be the existence of crystalline structures
as yet unsuspected, but possibly linked to the progressive enhancement of Friedel structure
now seen as potentially associated with nonlinear response [11]. Finally, the existence of a
melting point maximum succeeded by a relatively precipitous decline in the melting curve
with pressure may also have consequences on the form of hydrogen’s shock Hugoniot.
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